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P R E F A C E  

With the introduction of written Grade " D " examinations the need 
for information on fundamental as well as specialist theory becomes more 
urgent, and this training supplement has been planned as the first of a 
series to cater for the requirements of Grade " D " candidates. 

The supplement is based on technical bulletins which have been 
issued to Instructors in the BBC Engineering Training Department during 
the past two years. Many of these bulletins, written by the Head of the 
Engineering Training Department, covered fundamental problems in Radio 
Engineering of importance to all those engaged in the technical activities 
associated with broadcasting. 

The subjects under examination were often suggested by queries raised 
during discussions with Instructors, and each problem is complete in itself 
and not necessarily inter-related with its neighbours. 



SOME FUNDAMENTAL PROBLEMS IN RADIO 
ENGINEERING 

INTRODUCTION 
Eight fundamental problems are examined in this supplement, which 

covers such subjects as induced e.m.f., j notation, transformer action, 
amplification, bridge negative feedback and detection. Confusion seems to 
exist concerning induced e.m.f. in a coil and the voltage appearing across 
the terminals of the same coil. This and the significance of the term " back " 
e.m.f. are considered in the opening problem and reference is made to the 
possibility of calling the voltage across a resistance a " back voltage." 
Considerable importance is attached to the second problem concerning the 
application of " j " notation, and attention is specially drawn to the useful- 
ne!s of admittance in solving radio-frequency circuit calculations. Whilst 
j notation can prove a most valuable tool in the hands of the radio engineer, 
he cannot afford to neglect the vector representation of his results, and in 
the section on transformers the method of attack is by j notation but the 
result is interpreted in vector form. Problem 4 explains why turns of coils 
may be short-circuited at  radio frequencies but must not be short-circuited 
at  audio and power freque . 

The next three probl r s are concerned with amplification ; the subject 
of one is harmonic distortion in variable-mu valves and it is shown why a 
single valve can be used for r.f. but not for a.f. operation : another indicates 
how a change of .load impedance is caused by adding a second valve in 
push-pull to a Class-A output stagc : the last shows the method of calculating 
amplifier output impedance when combined current and voltage feedback is 
employed as in the Dl1 1 amplifier. 

A simple explanation of modulation, peak clipping in a detector due 
to an a.c.1d.c. load resistance ratio less than unity completes the supplement. 

1. INDUCED E.M.F. IN AN INDUCTANCE 
Before starting a general discussion on induced e.m.f. it is important 

to differentiate between the voltage produced across a resistance by a current 
flowing through it, and the e.m.f. induced in a coil as the result of a current 
through the coil setting up an external magnetic field. In the first instance 
energy is continuously dissipated in the resistance, and the energy and voltage 
disappear as soon as the driving e.m.f. is withdrawn. In the second case 
energy is stored in the magnetic field set up round the coil, and it can be, and 
is, returned to the circuit when the driving e.m.f. decreases or is withdrawn. 
This induced e.m.f. exists only while the current is chariging in value and 
always has such a polarity that it opposes the current change, i.e., when the 
current is increasing in value the induced e.m.f. acts against it and when it is 
decreasing in value the e.m.f. acts with it. 



INDUCED E.M.F. IN AN INDUCTANCE 

Fig. 1 illustrates a series circuit of R and L connected through a switch 
S to a resistanceless battery providing an e.m.f. of E volts. 

At the instant when switch S is closed to position 1 the battery e.m.f. 
appears instantaneously across the inductance L, and an e.m.f. is generated 

Fig. 1 

in the coil to oppose the battery e.m.f., having a polarity making B positive 
with respect to C. The current round the ircuit gradually builds up 
exponentially to a steady state value of EIR / . the voltage across L, which is 
the induced e.m.f. in L, falls eventually to zero whilst that across R rises 
(A is, .of course, positive with respect to B) to, a steady state value of E volts. 

If the'switch S is moved to position 2 after the steady state has been 
reached, the magnetic field in L begins to collapse and induces an e.m.f. in 
the coil which tends to maintain the current in the circuit. The actual 
magnitude of the induced e.m.f. depeiids on the rapidity of breaking current 
if the changeover from position 1 to 2 is. not instantaneous, and it has a 
polarity opposite to that originally produced when the driving e.m.f. is 
applied. 

In order to emphasise the polarity change in the induced e.m.f., Figs. 2 
and 3 are shown with a battery replacing the coil. 'I he battery analogy must 
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not be pushed too far because many students imagine a battery as having an 
e.m.f. fixed in relation to time ; in actual fact the induced e.m.f. only 
manifests itself when the current is changing, being zero when the latter is 
constant. The only excuse for using the battery illustration is that it indi- 
cates quite clearly the polarity of the induced e.rn.f. and its reversal when 
the current in the circuit is reduced. 

The actual time variation of voltage across the resistance, and of 
induced e.m.f. in the coil is shown in Fig. 4 for both positions of switch S. 
The full line curves for position 2 of the switch assume that tlx changeover 
from 1 to  2 is instantaneous so that the induced e.m.f. is equal to the original 
battery e.m.f. E, but is of opposite polarity to that of the induced e.m.f. 
when in position 1. In practice the changeover is not instantaneous and there 
is generally a time interval between the break of 1 and the make of 2. At 
the beginning of the break period the resistance in the circuit is infinite and a 
theoretically infinite e.m.f. appears across the coil in trying to maintain 
the current at its original value of I = E/R ; actually, the e.m.f. never 
reaches an infinite value though it may be very large. I t  generally causes the 
air between the break points to ionise and produce a flashover ; this imme- 
diately inserts a finite resistance in the circuit and limits the e.m.f. 

The e.m.f. for the non-instantaneous make and break is shown by the 
dotted curve (position 2) in Fig. 4, which " rises " to a much higher negative 

I I I 
I !  POSITION 2 POSITION I I, 

I ,  

Fig. 4 

value than the instantaneous break, but -much more rapidly while the 
flashover lasts and then at  the same rate from a lower negative value when 

position 2 is made. The time constant for the flashover is R%b, and for the 

make (position 2) is LIR, where Rb is the resistance of the arc of the flashover. 

5 



INDUCED E.M.F. IN AN INDUCTANCE 

The induced e.m.f. in the coil due to a changing current in it is generally 
written as 

The necessity for this will e apparent from the statement made above, viz., 
that the induced e.m.f. has \ polarity such as to oppose the current change 
producing it. I t  also follows from Kirchhoff's second law which states that 
" in any closed circuit the algebraic sum of the voltages in the various parts 
of the circuit is equal to the algebraic sum of the e.m.f.s acting round the 
circuit." Applying this law to the circuit of Fig. 1, we should write 

where VAC = the voltage across AC in the direction A to C 
and VCB = the voltage across CB in the direction C to B. 

Expression (1) may be rewritten 
di E L =  - L - = V C B = - V X  
dt 

thus the voltage across BC in the direction B to C is 

Replacing EL in (2a) by - VBC 

E - VBC = V R  ... ... ... ,.. (2b) 

The sign attached to VBC in expression (2b) emphasises the " counter " 
character of the induced e.m.f. by indicating that it acts against the driving 
e.m.f., and it explains why the term " back " e.m.f is often applied to an 
induced e.m.f . 

If it is desired the induced e.m.f. can be associated with the voltage side 
of equation 2a so that 

There is no fundamental difference between (24 and (3). but (3) is the more 
useful expression when solving a.c. problems dealing with circuits containing 
R and L. 

I t  is necessary now to consider the significance of expressions 2a and 3 
in the vectorial representation of current and voltage in a circuit of L and R, 

6 
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to which is applied a sinusoidal a.c. driving e.m.f. (Fig. 5). Expression 2a 
becomes 

E + E L =  V R  . . . . . . . . . . . . * (4) 
The dot over the e.m.f.s and voltages indicates that they are vectors and 

Fig. 5 

not, therefore, necessady in the same straight line. If the instantaneous 
current is represented by 

i = f sin pt 
where f is the peak value of the current, and p = 2 r f ;  , 
the instantaneous voltage across the resistance is 

v , = i ~ = f ~ s i n p t  

and is in phase with the current. 

Fig. 60 

7 
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The instantaneous induced e.m.f. is 
di  

er=  - Ldl  = - L p I c o s p t = ~ p P ( -  mspt) 

and it lags 90" behind the instantaneous current. 

The waveform and r.m.s. vector representations of (4) are therefore as shown 
in Figs. 6a and 6b, where the voltage across the resistance V R  is the voltage 

Fig. 66 

referred to the direction A to B, and the induced e.m.f. is the voltage across 
the coil in the direction C to B. In most radio problems the voltage across 
L and R is the important parameter, and in these circumstances the voltage 
appearing across L is required in the direction B to C. This gives rise to the 
vector representation of Fig. 7, where V A B  and VBC are the components of 
the driving e.m.f. appearing across R and L respectively. 
VBc = - VCB = - EL is the conventional inductive voltage vector leading 
upon the current I by 90". 

Some authorities* carry the argument of back e.m.f. further by sug- 
gesting that the voltage across a resistance is a " back " voltage in the sense 
that it opposes the flow of current in a resistance, and though this is a rather 
heterodox view it cannot be said to be fundamentally wrong. In effect, 
these authorities are writing expression (4) as 

E + EL - V R  = 0 = E - VBC - VAB = E + VCB r VBA 
and the vector diagram is that of Fig. 8. 

-- - - -- - --- - 

F. M. Colebrook. "Basic Malhemalics for Radio Studenis." Iliffe. 

8 



INDUCED E.M.F. IN AN INDUCTANCE 

Summarising, Fig. 7 is the utilitarian representation of voltage and 
current vectors, most helpful to radio engineering students ; Fig. 6b illus- 

Fig. 7 

trates the orthodox convention with the induced e.m.f. vector shown as a 
true " back " e.m.f., and is halfway towards the heterodox and yet perhaps 
more logical representation of Fig. 8. The student must realise that all the 

Fig. 8 

diagrams are slightly different viewpoints of the same thing, and he would be 
wise to make no attempt (as is sometimes done) to combine Figs. 6b and 7. 
showing the voltage vector VBC on the same diagram as EL as if it possessed 
a separate identity. 

9 



2. APPLICATIONS OF j NOTATION 

The importance of j notation for solving circuit problems in radio 
engineering is becoming generally recognised, and the fundamental principles 
involved in the operator " j " are included in many text books and in TT.5. 
It is unnecessary therefore to consider these and in this section only applica- 
tions are examined. 

Impedance, Resistance and Reactance 
The three basic forms of the series circuit shown in Figs. 9a, 9b and 9c 

are written in j form as 

... Z = R + joL ... ... ... ... (Sa) 

where o = 2a x frequency. 

Fig. 9 . 

The general form of the impedance expression is 

Z = R + j X  ... . . .  ... ... (6) 
1 

where Xis the reactance, i.e.. wL if it is inductive and -- oc if it is capacitive. 

Hence, if analysis of a complicated circuit results in an impedance expression 
having a positive sign associated with the j term, the reactance is inductive, 
or equivalently inductive. Alternatively, a negative sign associated with the 
j term implies a capacitive reactance. The qualification " equivalently " is 
employed in the above sentence to indicate that the inductive reactance 
resulting from the analysis may be a complicated function of frequency 
(containing powers of frequency greater than unity) and not of the form 



APPLICATIONS OF j NOTATION 

2mfL. An example of an equivalent capacitive reactance is provided by 
the term 

oaM2 
- joLe.  Re + w ~ L ~ ,  

in section 3. If so desired, this term could be called a negative inductive 
reactance, since the reactance clearly tends to increase with increase of 
frequency, but in the writer's opinion it is preferable to call it an equivalent 
ca~acitive reactance. 

Since the use of mathematics is merely a means to an end as far as the 
engineer is concerned, a mathematically expressed result is of no value 
unless it can be readily interpreted in a practical form. To illustrate the 
interpretation of j forms of the impedance vector, the following two 
expressions 

Z, = 100 + jlOOO 
and 

Ze=200-j300 
will be considered. 

The practical equivalent of 2, is a resistance of 100 ohms in series with 
an inductive reactance of 1,000 ohms, and that of 2, is a resistance of 200 
ohms in series with a capacitive reactance of 300 ohms. Figs. 10a and lob 

give the vectorial representations and it will k noted that the total impedance 
or modulus of Z , ,  designated by I 2, I is 

dm' + I O O O ~  = d ~ , o i o , o  = 1005 a 
X lo00 

The angle by which.?, leadsupon R, is 8,= tan- -'= tan-'- = 84" 
R 1 100 

IS", 
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and for this circuit the applied voltage will lead the current by this angle, 
8 ,  = 84' 18". 

-- -- 
The modulus of Z,  is 1/2002 + 300" d130,000 = 360 Q and 2, 

300 
itself lags behind R2 by an angle 0, = tan- 1 - - = - 56" 19". For this 200 
circuit the current will lead an applied voltage by an angle of 56" 19". 

The value of the modulus of impedance is seen to be independent of the 
sign associated with the j term, being always 

IZI = ~ R Z  + X 2  ... . . . ,.. . . . (7) 

This is to be expected since it is stated above that the sign is really associated 
with the reactance X, and where it is capacitive IZ I may be written 
dR' + (- Xc)2 = 1 / ~ ~  + Xac. The sign itself merely indicates whether 
the applied voltage leads or lags upon the current, a positive sign meaning a 
voltage lead and a negative a voltage lag. No further information of the 
practical form of Z, and Z2 can be obtained unless the frequency is specified. 
I f f  = 50 c/s the inductive reactance of 1,000 ohms can be specified as that 

1000 
produced by an inductance of L = - = 3.185 henry, and the capacitive 

2nf 
. 10' 

reactance of 300 ohms as that produced by a capacitance C = - = 10.6 
25rf300 

microfarad. The two practical circuits corresponding to the 2, and 2, j forms 
are as shown in Figs. 10c and 10d. 

Fig. 10c & d 

One further point needs to be stressed : impedance is essentially a series 
circuit parameter, and the total applied voltage and its resistive and reactive 
components are obtained by multiplying Z, R and X by the current I. 
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Thus 
E applied = ER + +EX 

and if a current of one ampere is flowing through the circuit Z, 
E applied = 1005 volts, E, = 100 and E x  = 1,000 volts. 

Admittance, Conductance and Susceptance 
For the solution of parallel circuit problems-these tend to predominate 

in radio engineering-admittance, Y, the reciprocal of impedance, is a more 
useful parameter. 

Since Z = EII, Y = IIE, and multiplication of Y by the applied voltage 
E gives the total current in the circuit. The units for Y are mhos, and prac- 
tical values are usually less than unity ; for example, an impedance of 
100 ohms is equivalent to an admittance of 1/100 = 0.01 mhos. 

Just as Z has two components, so has Y  : conductance, G, and suscep- 
tance, B, measured also in mhos and numerically equivalent to the reciprocal 
of parallel resistance and reactance. When multiplied by the applied voltage 
the two components give the conductance and susceptance components of 
the total current. 

The general form of the admittance expression is 

Y = G + j B  . . . . . . ... . . . (8) 
and the physical interpretation of this is a circuit consisting of a resistance, 
1/G ohms, in parallel with a reactance, - 1/B ohms, as shown in Fig. 1 1 .  

Fig. I I 

The negative sign before the reciprocal of susceptance means that the sign 
of the equivalent parallel reactance is opposite to that of the susceptance, 
i.e., a capacitive reactance is equivalent to a positive susceptance and con- 
versely an inductive reactance is equivalent to a negative susceptance. This 
is to beexpected,since in a series circuit the reference vector is current and 
the total voltage is analysed into resistive and reactive components. An 
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inductive reactive voltage leads upon the reference current vector, thus giving 
a positive sign to the reactance. In the parallel circuit the reference vector is 
voltage and the total current is analysed into conductive and susceptive 
components. An inductive susceptive current lags behind the reference 
voltage vector and this gives a negative sign to the inductive susceptance. 
Thus the sign attached to susceptance indicates whether the current leads 
or lags upon the voltage ; a positive sign means a current lead and a negative 
sign a current lag. 

To illustrate this feature, an inductance L or reactance XL is analysed 
vectorially as part of a series circuit in Fig. 12a and as part of a parallel 
circuit in Fig. 12b. 

L E (REFERENCE 
VECTOR) 

I (REFERENCE 
VECTOR ) 

Typical j forms of admittance are as follow : 

Y, = 0.001 + jO.01 
Y, = O.Od2 - j0.02 

and their practical equivalents are,.for Y, ,  a circuit consisting of a resistance 
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of 1,000 ohms (1/0.001) in parallel with a capacitive reactance of 100 ohms 
(1/0.01), and for Y, a resistance of 500 ohms in parallel with an inductive 
reactance of 50 ohms. These circuits and their vectorial representations 
are shown in Figs. 13a and 13b. 

Fig. 13b 

The total admittance or modulus of the admittance is 

IYI = ~ G z +  Ba, ... ... ... ... (9) 

hence I Y1 I = d(0.001)~ + (O.O1)a = 0.01005 mhos 

and i Y, I = d(0.002) ' + (0.02) a = 0.0201 mhos 

If the applied voltage across Y, and Y, is 1,000 volts, the resistive, reactive 
and total currents are 1.10 (capacitive. leading). and 10.05 amps. respectively, 
and 2,20 (inductive. lagging) and 20.1 amps. respectively. The total current 
10.05 amps. for Y, leads uponthe voltage by an angle 8, = tan-'BIG= tan-' 
0.01/0.001 = tan- '10 = 84" 18', and the total current 20.1 amps. for Y, lags 
behind the voltage by an angle 8, = tan-'- 0.02/0.002 = - 84" 18'. 

Further information on Y, and Y, can be obtained if the frequency is 
specified. For example, when f = 50 CIS. 

0.01 x 10' 
B, = 0.01 = 2x-C and C = -- - 

314 - 31.85 PF 

Conversion of Impedance to Admittance 
As explained above, many r.f. problems require the solution of circuits 

into the admittance form, and in complicated analyses it may be necessary 
to convert a series circuit into its equivalent parallel form. In a series circuit 
of R and X, the impedance is 

Z = R + j X  
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and the admittance is 

Rationalising 10a 

R - jX R - jX 
Y = -- 

( R + j X ) ( R - j X ) - R a  f X' 

R - -- - X 
R' +x(  - j ~ f a  = G  + jB ... . . . . . . ( 1  Ob) 

1 R 1 - X 
fromwhichG = - = R ~ ~ a  andB = - - = - 

R9 Xp Ra + X a  
Hence the series 

circuit of R and X is identical with and may be replaced by a parallel circuit 
consisting of a resistance (Ra + Xa)!R in parallel with a reactance of 
(Ra +Xa)/X as shown in Fig. 14. 

Fig. 14 

To illustrate the advantages of such a conversion consider a series circuit 
of R = 1,000 ohms and C = 5.05 ppF placed across a circuit tuned to 1,000 
kc/s by a capacitance of 200 ppF and having a resonant impedance of 
100,000 ohms (Fig. 15a). The effect of adding this series circuit across the 
resonant circuit cannot be visualised, but if its parallel equivalent is found it 
becomes immediately obvious. (Fig. 15b.) 

1014 
.4t 1,000 kc/s Xc = - - 

6.28 x lo6 x 5.05 
- 31,500 ohms 

I Ra + X' 1000' + 31500' H p  = - = -. -- = 
G R lo00 

fi 1,000,000 ohms 

R' + X a  1000' + 31500= x#,= - ---- 
X - e - 31,550 ohms - 31500 



- 1 
Xp = -- = - 3 1 5 0  whence C -- 5.04 & 

. 

oC 

'The two forms of the complete circuit are shown in Figs. 15a and 15b. The 
parallel form of circuit indicates that the original circuit is damped by an 

additional 1,000,000 ohms, reducing its resonant impedance to 45,000 ohms, 
and it is distuned by the additional capacitance of 5.04 p p F ,  its new resonant 

frequency being approximately 1000 x = 988 kc/s. 

Admittance in Valve Problems 
Valve problems are generally analysed more readily by using the 

admittance concept, and this is particularly true of the variable-reactance 
valve, an example of which is given in Fig. 16. The anode-cathode circuit of 

Fig. 16 

the variable-reactance valve (V$ is placed across the tuned circuit of the 
oscillator (V1) ,  and its grid r.f voltage is derived from a phase-shifting 
network R and Cacross the oscillator tuned circuit. This grid r.f. voltage E, 
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is given approximately 90" phase shift and it produces a r.f. anode current 
which is in phase with Et and therefore approximately 90" out-of-phase 
with the r.f. anode voltage. Such a condition is that found with a reactance, 
and if the bias on the control grid (or some other grid, if a multi-electrode 
valve) is varied the r.f. anode current r.rn.s. value is varied, and the equiva- 
lent of a variable reactance is obtained. 

Ia = gm Eg ... ... ... 
if the valve is a tetrode and R,, is very large. 
Replacing Eg in (12) by its value from ( 1 1 )  

gm Ea . (- jXc) 
I ,  = 

R - jX, 
The admittance looking in from the points AB towards V ,  

- jgmXC ( R  + jXc) 
Rationalising YAB = 

R2 + Xc2 

Expression (13) is equivalent to a resistance of (R2+Xc2)/(gm X c 3  in 
parallel with an inductive reactance of (R2+Xc2)/ (gm XJ?).  I t  is the 
second term which gives the variable reactance valve its characteristic and 
makes it a useful frequency modulator. The first term damps the tuned 
circuit and causes a variation in oscillation amplitude ; in practice special 
precautions are taken to reduce or cancel its effect. 

The Parallel Tuned Circuit 
The parallel tuned circuit of Fig. 17a illustrates a very common form 

of practical circuit, and its series or parallel equivalents at  frequencies other 
than the resonant frequency are quite often required. . 

For the series equivalent 
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oc 
Multiplying top and bottom by - - i  

Rationalising 

which is equivalent to a resistance, Rs, of 
R 

( 1  - w 2 L q 2  + (OCR)' 

[ L  ( 1  - oZLC)  - CR2] 
in series with a reactance, X's, of * - 

( 1  - o2LC) + ( O C R ) ~  

These- two components may be interpreted in a more suitable engineering 
form by noting that XL= o L  and Xc = l / o C .  

Thus 

[. ( 1  -2) - CR*] 
o [ L  (1 - 02LC) - CR2] 

and Xs = -- - 

(1 - O ~ L C ) ~  + ( o C R ) ~  - R 2 - -  
(I - E) + 
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The sign of Rs is unaffected by the relative magnitudes of XL and Xc but 

that of Xs depends on whether XL > or < XC. 

The reactance Xs becomes zero at the resonant frequency, i.e., when 

Therefore the resonant frequency f, is 

where f ,  = the resonant frequency when R = 0. 
If the above value off, is inserted in the expression for Rs the well-known 
resonant condition Rs = L/CR is obtained. This same value of resonant 
impedance is obtained from the initial expression for Z after assuming that 
R can be neglected in comparison with oL and that f, = 1 /2~1 /~? .  
For frequencies below resonance XLIXC is less than unity and Xs is positive, 

Fig. 17b Fig. 17c 

thus indicating that the parallel circuit appears as an inductance in series 
' 

with a resistance. (See Fig. 17b.) 

Conversely, above resonance X s  is negative and the circuit appears as a 
capacitance in series with a resistance. (See Fig. 17c.) 

This result could have been deduced by considering which branch takes 

20 
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the larger current. For example, at  frequencies below resonance the inductivii 
branch has a lower impedance and therefore takes the larger current. The 
total current must therefore be preponderantly inductive, and the circuit 
appears as a resistance in series with an inductance. 

For the parallel equivalent of Fig. 17a 

Rationalising 
( I  - 02LC + joCR)  ( R  - jwL) y = --- 

R2 + o Z L Z  

R2 + 0 2 L 2  
which is equivalent to a resistance Rp = - R in parallel with a 

R2 + 0 2 L 2  
reactance of Xp = - 

o [L(l  - ozLC)  - CR2] 

Alternative expressions are f' 

and 

and the equivalent circuit is as shown in Fig. 17d. 

The resonant frequency, obtained by making the susceptance com- 
ponent of Y equal to zero, is the same as for the series equivalent, and, as 
before, the reactance is positive or inductive at frequencies below resonance, . 
and is negative or capacitive at frequencies above resonance. 



3. VECTOR DIAGRAMS FOR TRANSFORMERS 
The vector analysis of a transformer is fundamentally the vector 

analysis of circuits containing mutual inductance coupling, and the purpose 
of this section is to consider reflected impedance and the voltage and current 
relationships existing in such circuits. Consideration is given first to  the 
simplest case of mutual inductance coupling between two sections of one 
coil, and later the theory is developed to cover the auto-transformer and the 
transformer with separate primary and secondary windings. The results are 
equally applicable to power and audio frequencies as to radio frequencies. 

The Series-aiding Connection or Positive Mutual Inductance 
Coupling 
The simplest example of mutual inductance coupling is supplied by two 

sections of a coil coupled together and series-connected in such a manner 
that their total inductance is greater than the sum of their separate induc- 
tances. Such coils are often termed series-aiding, because the two fluxes 
produced by the current flowing in the two coils have the same polarity. 

Dependent upon the magnetic leakage, the two fluxes link to form a 
common flux embracing turns of both coils. The circuit, illustrated in 
Fig. 18a, is assumed, for convenience, to be resistanceless, and the driving 
e.m.f. is taken to be sinusoidal of r.m.s. value E volts. If it produces a current 

Fig. 180 Fig. 18b 

of r.m.s. value I amps. in the circuit, there are four e.m.f. components across 
the points AC ; two, due to the " back " e.m.f. of self induction, are of values 
j o L J  and j oLJ* ,  and the other two, one produced in each coil due to current 
in the other, have equal values of jwMI. The vector representation is 
therefore as shown in Fig. 18b ; the voltage across coil 1 is EAB = 
j o ( L l  + M ) I ,  and that across coil 2 is EBC = jw(Lz  + M ) I .  If the voltage 
across the second coil is considered in the direction C to B instead of B to 

* Note that the operator j indicates that L1l leads upon the current vector I by 
90•‹. Conversely - j indicates a lag by 90'. 
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C, the vector diagram is that of Fig. I&, and it is shown later that this 
alternative is helpful in solving many transformer pr~blems. 

Fig. 18c 

If the driving e.m.f. is now applied to the coil L, only, and the second 
coil is left on open circuit (see Fig. 19a), an e.m.f. will be induced in L, due 

Fig. 190 

to the current change in L,  and it will have a value jwMI,  in the direction 
BC, or a value - jwMI,  in the direction CB. There will not be, however, an 
e.m.f. induced in L,  due to mutual coupling to L,, since there is no current 
in L,. The vector diagram and its alternative (similar to Fig. I&) are shown 
in Figs. 19b and 19c. In this circuit we have the simplest prototype auto- 
transformer. Fig. 19a can be re-arranged as in Fig. 20 to give the simplest 
form of transformer with separate primary and secondary coils but with one 
primary and one secondary terminal connected. The turns of coil L,  are 
shown reversed in the diagram so as to emphasise that the flux which wculd 
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be produced by I ,  flowing in L2 would be of the same polarity as that pro- 
duced by I ,  flowing in L,. I t  should be noted that the voltage developed 
across the secondary terminals, ECB, is 180' out of phase with the driving 

Fig. 196. Ng. 19c 

voltage applied to the primary terminals, i.e., Fig. 19c gives the vector 
representation. 

If the terminals CB are short-circuited, a current I ,  is produced in L ,  
(Fig. 21a) and this current induces in the primary coil L, an e.m.f., which is 

Fig. 20 Ng. 21a 

in a direction to add to the driving e.m.f.. and so increase the current I ,  
flowing in the primary. The e.m.f., induced in L ,  from L,, causes a current 
in L, in the opposite direction to that which would result were the driving 
e.m.f. to be applied a r ss AC as in Fig. 18a. Thus, in the vector diagram of R\ Fig. 21b, I ,  is shown as a vector pointing in the opposite direction to I , .  
Because of this reversed direction of secondary current the e.m.f. induced in 
L, from L ,  (+MI,) is opposite in direction to the e.m.f. of self induction 
and cancels part of it, so aiding the driving e.m.f. The effect on the primary 
is exactly the same as if the primary inductance has been reduced, for 

... E = I , j o L , + I I , j o M  ... . . (14)  

- 1, joM = I2  j o L  ..a- ... ... ... ... (15) 

24 
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so that 

By noting that the coefficient of coupling k  =F M / d ( L , L , ) ,  the effective 
primary inductance LAB = L1(l - k Z ) ,  and if k  = 1, LAB = 0,  or a short- 
circuit of the secondary results in a short-circuit of the primary. If k < 1, 
the resulting inductance LAB is the leakage inductance. 

The next stage in the investigation is to place a resistance R across the 
secondary terminals as in Fig. 22a. Owing to the resistance the phase angle 

Fig. 22a 
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between the driving e.m.f. and primary current I,, and that between the 
secondary induced e.m.f. - jwMI, and secondary current I ,  is no longer 90", 
though the phase angle between the primary current I ,  and secondary 
induced e.m.f. is still 90". The vector diagram is that of Fig. 22b, and it is 
seen that the effect of the e.m.f. induced &to the primary by the secondary 
current is not only to reduce the effective primary inductance LAB but also 
to insert a resistance component in series with it. I t  is interesting to note 
that this series resistance component is not a simple function of R but 
actually depends on o. M, L2 and R, and has a maximum value when 
R = o L e .  The effective primary inductance and resistance component can 
be calculated as follows :-- 

- 

... E = I , j w L  + 12 jwM ... ... 

... - I ,  joM = I2  (jwL2 + R) ... ... 
. . ... ... 

w2M2(R - j oLJ  

= I ,  [ j w  ( L ,  - L,  . R2 + d L 2 2  
w2M2 

Thus LAB = L1 - L2 
R,  + 

-.. ... 
w2M2 

And RAE = R .  ... ... R2 + w 2 ~ 2 j  
"' 

So far the analysis has been developed from two coils connected so that 
their mutual inductances add to their self inductances. A start could, 
however, have been made with two coils connected in " series-opposition " 
with their mutual inductances opposing the self inductances, and this 
problem will be considered next. 

1- 

Fig. 23a 
,-(-M)I 

Fig. 236 
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The Series-opposition Connection o r  Negative Mutual Inductance 
Coupling 
In the series-opposition connection the sign of mutual inductance M is 

negative and the directions of all vectors containing the mutual inductance 
factor M have to be reversed. Vector diagrams corresponding to Figs. 18b . 
and 19c are given in Figs. 23b and 24b, and the chief point of interest is that 

4 c 
Fig. 24a Fig. 24b 

the induced voltage Eco in the auto-transformer (Fig. 24b). is in phase with 
the driving e.m.f. and not 180' out-of-phase as for the first condition of 
mutual inductance. 

When the secondary coil L, is short-circuited (Fig. 25a), the secondary 
current I,, caused by the e.m.f. induced from L,, is in the same direction as 
that which would result were the driving e.m.f. applied across the p o i ~ t s  AC. 

Fig. 250 Fig. 25b 

The current vector I, is therefore in phase with the current vector I , ,  and 
the diagram is as shown in Fig. 25b, which corresponds with Fig. 21b. The 
expressions for voltage and current corresponding to (14) and (15) are 
modified to 
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- I ,  j o ( -34 )  = I* j o L  ... , . . ... ... ... (23) 

but the final result as far as the primary is concerned is unchanged because 

The same is true when the secondary is terminated by a resistance R, 
the vector diagram for which is that..of Fig. 26. 

Fig. 26 

Thus the sole effect of changing the sign of the mutual inductance 
between the coils is that the secondary terminal voltage is reversed in phase ; 
this is to be expected, since changing the sign of mutual inductance is 
accomplished either by reversing the secondary connections with respect to 
the primary, i.e., open-circuiting BB' in Fig. 25a and joining C to B, or by 
reversing the direction of the primary or secondary turns. The primary 
current is unaffected by the sign of M and the effective primary inductance 
and resistance are unchanged. In fact it can be said that unless there is some 
form of coupling other than mutual inductance between the circuits, it does 
not matter what the sign of M is. Before considering the problem of double 
coupling it is worth while noting that equivalent T section circuits can be 
produced. The equivalent T section diagrain for Fig. 22a is shown in Fig. 27. 
It  can be seen that across the points AC of the series arm is the total induc- 
tance L ,  + L ,  + 2M, as would be expected, whilst the shunt a m  is - M. 
As a check it may be noted that 

( I ,  + I,) j o ( -  M )  = I ,  jw(L2 t M )  + I ,R 

or I ,  jw(-  Jd) = - I ,  jwhl = I , ( j oL ,  + R) 
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which agrees with Fig. 22b, and also that the impedance looking in at the 
primary terminals AB is 

j o ( -  M ) .  (R  + jo (L ,  + M ) )  
j 4 L l  + M) + R + joL ,  

which is the same as expression (1%). 

Fig. 27 

The equivalent T section when M is reversed is as in Fig. 28 ; the shunt 
arm is now + M .  .It  is worth while warning students that there is some 
difference of opinion as to the sign convention for M .  The orthodox view is 
that a positive sign should be given when M adds to total inductance giving 
the series arms L ,  + M and L,  + M, i.e., it is the series-aiding connection, 
and a negative sign is then given to the reversed or series-opposing connection 

B 

Fig. 28 

when the series arms are (L ,  - M )  and ( L ,  - M). Some authorities (National 
Physical Laboratory Publications) adopt the opposite convention denoting 
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the series-opposing connection as the positive value of M .  This is justified 
on the grounds that the coupling arm (see Fig. 28) should give its sign to M. 
Adopting the orthodox convention, a positive value of M gives a secondary 
output voltage reversed in phase (not necessarily by 180") upon the input 
e.m.f.. and the negative sign produces a secondary voltage " in phase " 
(though not necessarily exactly at  0') with the input e.m.f. Either conven- 
tion if pursued logically will give the same result. 

As far as the primary is concerned it has already been shown that the 
result is the same whatever sign M has, and its only effect is on the phase of 
the secondary output voltage relative to the input e.m.f. Except in problems 
involving feedback it does not matter whether M is positive or negative so 
long as there is no other form of coupling between the primary and secondary. 
In most practical cases there is coupling, intentional or accidental, in 
addition to mutual-inductance coupling. An example of intentional addi- 
tional couplings can be found in certain types of r.f. band-pass filters, and 
accidental double-coupling is produced in an a.f. transformer which has 
capacitance between the primary and secondary windings. In all these cases 
the sign of M is most important and the transformer performance may be 
completely altered if the sign of M is changed, for example, by reversing 
primary or secondary connection. 

Effect of the Sign of M in Double-coupled Circuits 
As an illustration of the effect of the sign of M in an intentionally 

double-coupled transformer, consider the vectorial analysis of the circuit 
shown in Fig. 29, first with M positive (according to the orthodox view) and 

D 

Fig. 29 

then with M negative. To simplify the examination the secondary is assumed 
to be open-circuited. From Fig. 19c, the voltage ECB induced in L ,  from L ,  
is - I ,  j o M ,  and this is in phase with the voltage across the capacitor Co, 
- I ,  j/oCo, which lags by 90" behind the current vector I,. Hence, as 
shown in Fig. 30, the coupling provided by Co acts in the same direction as 
that due to + M, and increases the voltages injected into the secondary 
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circuit. When M is negative, Fig. 24b shows that the induced voltage in L,  
is reversed, and the vector diagram is that of Fig. 31. The voltage induced in 
L, now opposes that due to Co, and at one particular frequency the net 
voltage is zero. This occurs when 

1 
0oM = - woco 

Fig. 30 Fig. 3 1 

Referring to the equivalent T-section network, of Fig. 32, this implies 
series resonance of-the shunt arm. There is no possibility of series resonance 
when M is positive ; because the shunt arm M is then negative, and 

Fig. 32 

a(- M )  - (I /wCo) can never be zero. I t  is therefore clear that the sign of M 
is most important and that transformer performance will be quite different 
for negative from what it is for positive M. 

An illustration of unintentional double-coupling provided by inter- 
winding capacitance is shown in Fig. 33. The vector analysis has the addi- 
tional complication of current in the secondary coil L,  due to the coupling 
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capacitance. If M is positive and the reactance of Co is much greater than 
that of L, this current is in the opposite direction to that in which it would 
flow were the driving e.m.f. to be connected across AC. The vector diagram 

e 
Fig. 33 

is therefore as in Fig. 34. The voltage Ecs is the sum of that injected from 
L,  (- I, j o M )  and that due to the current I, in L ,  and, as shown by the 
diagram, the two are additive. The effect of the coupling capacitance C, is 

Fig. 34 

therefo~e to increase the secondary voltage and is identical with that obtained 
by the seriks capacitor Co. When M is negative the induced voltage in L, 

32 
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from L, reverses and opposes I, joL, (Fig. 35) and at one particular 
frequency given by 

1 

f1 = L - MS) 
M -- c1 

the two voltages cancel to produce zero secondary voltage. This is again 
similar to the condition when the series capacitor Co is used. 

A sufficiently detailed treatment has been given to allow an interested 
student to extend the examination to cover all practical cases, such as by 
the addition of resistance in series with L, and L, and the insertion of primary 
and secondary tuning capacitors to cover r.f. and if .  transformers. 



4. SHORT-CIRCUITED TURNS IN COILS 
I t  is well known that turns in a coil forming part of a radi&frequency 

tuned circuit may be shorted in order to change the tuning inductance, but 
that short-circuited turns in a power or audlo-frequency transformer can 
cause serious damage or completely ruin its performance. 

The explanation for the different effects of a short-circuit is that, (I), 
the inductive reactance of the short-circuited turns of a r.f. coil is generally 
much greater than the resistance because of the higher operating frequency, 
(2),  the coupling coefficient, k= M/.\/(L,L,), is less, and (3), the ratio of the 
total to  short-circuit inductance is much less than in the power transformer. 
The last two faktors cause a short-circuit circulating current little different 
from that in the main section of the r.f. coil, whereas for the power or a.f. 
transformer the circulating current is usually very large compared with the 
current in the rest of the coil, and relatively very large power is dissipated 
in the short-circuited section. 

To illustrate this point a possible circuit will be analysed and appropriate 
values inserted. Fig. 36 illustrates a coil having a short-circuited section, 

Fig. 36 

and for convenience it is assumed that the short-circuit has zero resistance. 
L, and R, represent the inductance and resistance of the short-circuited 
section of the coil and L ,  and R ,  the inductance and resistance of the re- 
mainder of the coil. If I, is the current taken from the source of driving 
voltage E, and I ,  is the current circulating in the short-circuited section, 
the voltage and current relationships are as follow :- 

E = I ,  (R ,  + jwL,) + I ,  joM ... ...... (25) 
0 = I ,  joM + I ,  (R,  + jwLJ ... ...... (26) 

- jwM I ,  ... ... ... ... ... 
"= R, + j o L ,  

(n) 
and substituting this in (25) 

I ,  j40sM 
E = I , .  (R,  + joL,) - ... ... (28a) 

R ,  + joLB 
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Noting that j' = - 1 and rationalising the second factor in (28a) 

... E = I ,  [R1 + AR, + j o  ( L ,  - AL,)] ... ... ... (Zsb) 

o B M 8  
where A = 

RZa + o Z L z 2  

If the section R,L, were not short-circuited, expression 28b would be 
modified to 

E = I' ,  [R,  + R ,  + j o ( L ,  + La + 2M)]  ... ... ... (2&) 

In most r.f. and power coils XL will be several times greater than R, 
and short-circuiting will therefore have greatest influence on the reactance, 
which is reduced, so increasing the current from the supply. The increased 
current inevitably leads to increased power loss, but the latter increase is 
much less for the r.f. coil than for the power transformer because A is very 
much less. 

The value of the circulating current is calculated from (27), which may 
be rewritten in its modulus form as 

= 1/A . ' I l l  ... ... ... ... ... (29) 
When R ,  & wL,  

Hence the circulating current is directly proportional to the coupling 
coefficient and the square root of the total to short-circuit turn inductance 
ratios. 

To illustrate the above theory the following examples will be taken from 
r.f. and power practice. 

R.F. Coil with Short-circuited Section 
The r.f. coil has the following constants :- 

L,  = 200 p H ,  
L ,  = 50 pH, 

M 
k,.  (the coupling coefficient -J=& = 0.3. 
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E Impedance of coil - - 
with short-circuit 

- = (R,  + AR,) + jw(L,  - ALJ 
I1 

= (12.56 + 1.13) + j o  (200 - 18) x 10 - "  
= 13.69 + j o  182 x 10-a 

= 13.69 + j 1142 ohms 

When not short-circuited 

Impedance 
E 
- = R l + R , + j o ( L l + L s + 2 M )  
1'1 

Curred without short-circuit I ,  1947 - - = - -  - 
Ratio current with short-circuil I t ,  1142 - 1.7 
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Power loss with sht-circuit  ( I  ,)'(R, + AR,) Ratio - - 
Power loss without short-circuit (I, ')~(R, + R,) 

Circulating current in shortcircuit section = 5 = .dA 
Ratio 

Current in remainder of coil I1 

Circulating current in shorGcircuit section I ,  I ,  f, 
Ratio - --- - - 

Current without short-circuit 111 - I ,  . I f l  

When a transmitter tuning frequency is changed by short-circuiting 
turns in a coil, the desired inductance is that presented by the remainder of 
the coil and a fairer basis of comparison would be against the current and 
power taken by a coil of the same inductance and the same initial Q. The 
impedance of such a coil would be :- . 

E -- - R', + j d ' ,  = wLt, (01 + j )  
I'll 

Current with short-circuit 
Ratio - 1 1  - - = 1 

Current in coil of same inductance I", 

Power loss with shortcircuit 
Powo  loss in coil of same inductance 1 1.42 

There is therefore some increase in coil losses when turns are short- 
circuited to obtain a given value of inductance compared with a direct value 
of inductance. 
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Power Transformer 
Turning now to the power transformer, typical values for the constants 

are :- 

L , =  2 0 H , L , =  1 pH,  k = 0.9,Q = 5 ,  f = ~ ~ C I S .  

For transformer impedance with short-circuited turn :- 

With turn not short-circuited :- 

E 
Normal transformer impedance -7 = 1256 + j 6280 

I1 

Current with short-circuit 
Ratio -!I--- - Current without short-circuit 

6400 2.424 I,' - 2640 - 

Power hss with shmt-circuit I l a  (R, + AR3 = (2a4.424)2 - - - 2230 
power loss without shmtcircuit I," (R, + R,) 1 256 

Circulating current in short-circuikd turn 
Current in remainder o j  transformr 

= 4z 














































